当前位置:书画频道首页 > 正文


艺术引领数学?

2017-05-04 17:06:28    煎蛋网  参与评论()人



一般认为数学和艺术是不同的学科,一个致力于抽象概念,另一个则注重情感。但有时候两者的界限并不分明。

从伊斯兰瓷砖到杰克逊·波洛克的混乱图案,我们可以看到艺术与数学研究之间的明显的相似性。两种思考模式并不完全相同,但有意思的是,似乎经常其中一个预示了另一个。

是不是有时候艺术会启发数学发现呢?没有简单的答案,但在某些例子中,看起来很可能是的。

阿尔罕布拉宫的图案

在14世纪和15世纪,阿尔罕布拉宫是柏柏尔人君主的宫殿和寝宫。对很多游客而言,这几乎是地球上最接近天堂的所在了:诸多有喷泉的楼天庭院,四周是遮阴避雨的环廊。天花板上布满了模印的类似钟乳石的精美几何图案。而最精美的当属四周墙壁的多彩瓷砖上的装饰,令人眼花缭乱,沉醉于喜悦之中。这种几何图案类似于音乐,令人灵魂出窍,如闻天音,喜不自胜。

阿尔汉布拉宫的瓷砖。Credit: 煎蛋第六位画师Chon

这是艺术的胜利,也是数学推理的胜利。这种装饰引发了一个数学分支名为铺砌问题,即利用规则的几何图形覆盖整个空间。数学上已证实,平面可被三角形、四边形和六边形等图形铺满,但五边形不行。

结合不同的形状也是可以的,比如利用三角形、四边形和六边形瓷砖完全填充空间。阿尔罕布拉宫就浸淫于这种精美的几何组合,使得看起来似乎是在移动中,而不是静止。这些图案似乎在我们眼前旋转,令我们的脑子在观看的时候不断思考,不断排列、重新排列这些图案,形成不同的新图形(比如盯着厕所的瓷砖思考人生)。

情感体验?不错。但这种伊斯兰瓷砖最令人着迷的是这些无名艺术家和工匠的杰作还表现出几近完美的数理逻辑。数学家们已经鉴定出17种对称形:左右对称,旋转对称等等。阿尔罕布拉宫就包含了至少16种,就像是教科书的图解。

这些图案不仅仅是漂亮,还蕴含着严密的数学,几乎完全囊括了基本的对称特性。而数学家们直到阿尔罕布拉宫建成几个世纪之后才提出对称原理的分析。

准晶体瓷砖

虽然阿尔罕布拉宫的装饰物是极好的,但波斯的杰作可能还要更胜一筹。1453年,伊斯法罕Darbi-I Imam圣地的无名工匠发现了准晶体图形。这些图形具有复杂神秘的数学性质,直到1970年代彭罗斯拼图的发现,数学家才能够进行分析。

这种图形能以规则的形状完全填满空间,但是所用的图形绝不重复。实际上,即使趋近于无限也不会重复,不过黄金分割这一数学常数会不断重复出现。

Daniel Schectman由于发现了违反完形法则的准晶体获得2001年的诺贝尔奖。这一突破性进展迫使科学家重新考虑物质本质的概念。

2005年,哈佛物理学家Peter James Lu证实可以利用相对简单的结瓷砖(girih tile)产生准晶体图形。结瓷砖结合了几种纯粹的几何形状形成五种图案:正十边形,不规则的六边形,蝶形,菱形以及正五边形。

Girih tile. Credit: 煎蛋画师Chon

不管理论如何,反正Darbi-I Imam圣地的准晶体图案是由不精通数学的工匠制造的,花费了数学家几个世纪的功夫来分析和解释。换言之,直觉先于完全的理解。

透视与非欧几里得数学

几何透视使得画师能逼真而准确地描绘所见世界,引发了意大利文艺复兴的艺术变革。并且还可以说透视引起了对基础数学定律的重要重新检查。

根据欧几里得数学,两条平行线永远平行不相交。而在文艺复兴透视的世界中,平行直线在远处最终会相交于所谓的“没影点”。即是说,文艺复兴透视提出了一种遵循通常数学法则的几何,但是非欧几里得的。


分享到:

用微信扫描二维码
分享至好友和朋友圈

精彩高清图推荐:

 



新闻 军事 论坛 娱乐